IMPLEMENTATION OF
RECURSIVE LIST-PROCESSORS:
LISP

B PO

11.1 RECURSIVE INTERPRETERS

A LISP Interpreter Can Be Written in LISP

In Chapter 9, Section 9.1, we said that the first LISP interpreter resulted from writing a uni-
versal function for LISP. A universal function is a function that can interpret any other func-
tion. In Section 11.1 we develop a universal function for LISP because it is an example of
a recursive interpreter, one of two major classes of interpreters. In Chapter 1 we saw an ex-
ample of the other major class, iterative interpreters.

The recursive interpreter is written in LISP, although it could be written in any language
with recursive procedures and the ability to implement linked lists. Since it is written in LISP,
it makes use of the facilities of LISP, such as the list-processing operations car, cdr, and
cons. In particular, these operations are used to interpret car, cdr, and cons operations in
the program that we are interpreting. This might seem circular and pointless. In fact it is ex-
actly analogous to the way floating-point operations were implemented in the pseudo-code in-
terpreter in Chapter 1 (Section 1.3). There, floating-point operations in the implementation lan-
guage (say, Pascal) were used to implement floating-point operations in the pseudo-code. Of
course, if our implementation language had not had a floating-point capability, then these op-
erations would have had to be implemented in terms of more basic operations. Similarly, if the
implementation language for a LISP interpreter does not have list manipulation operations, it
is necessary to implement these in terms of more basic operations. However, since we are us-
ing LISP as the implementation language, we can use list manipulation operations directly.

The LISP universal function is conventionally called eval since it evaluates a LISP ex-
pression. In addition to the expression to be evaluated, eval must have a second parame-
ter, which is a data structure (a list of some sort) representing the context in which the eval-
uation is to be done. Recall that it is incomplete Just to ask for the value of an expression;
it is also necessary to specify the context of the evaluation (see Section 2.5, p. 78, and Sec-
tion 6.1, p. 212). Hence, if E is any LISP expression (written in the S-expression notation)
and A is a list representing a context, then

(eval 'EA) =V

375

376 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

where V is the value of E in that context. In other words, the result of evaluating (eval 'E
A) is the same as the result of evaluating E in the context represented by A. Consider the
following application (where we have assumed nil represents the empty context):

(eval ' (cons (quote A) (quote (B C D))) nil)
(A B C D)

The result agrees with the result of evaluating (cons ‘A ‘(B C D)) in the empty (or
any other) context, whichis (A B C D).

The Interpreter Is Arranged by Cases

If we were to evaluate a LISP expression by hand, our first step would be to classify it, that
is, to decide the sort of LISP expression with which we are dealing. This is exactly what we
will do in eval, and the first step is to classify LISP expressions.

First, we have atoms, such as 2 and val. Numeric atoms, such as 2, represent them-
selves; nonnumeric atoms, such as val, represent the value to which they are bound.

All other LISP expressions are represented by nonatoms, that is, lists. These are all some
form of application. We have primitive applications such as (car x) and (cons x y).
We also have applications of user-defined functions such as (make-table text nil).
Finally, we have special applications, such as (quote x) and (if p e f).! The kinds
of LISP expressions are summarized in Table 11.1.

The eval function will break its input down into cases as shown in Table 11.1. The
LISP mechanism for handling cases is i f, so eval will take the form of a large if:

(defun eval (e a)
(if
(atom e)
Handle atoms
Handle lists))

TABLE 11.1 Types of LISP Expressions

Type Example

Numeric atom 2

Nonnumeric atom val

Quotation (quote (B C D))
Conditional (if (null x) nil 1)
Primitive (cons x y)

User defined (make-table text nil)

1 Recall that ' X is just an abbreviation for (quote X).

11.1 RECURSIVE INTERPRETERS 377

There are two kinds of atoms—numeric and nonnumeric—so the “Handle atoms” procedure is

(if (numberp e)
Handle numeric atoms
Handle nonnumeric atoms)

(Numberp is a LISP predicate that returns t if its atomic argument is a number.)

Applications fall into two broad categories: (1) the special functions (quote and if)
that do not evaluate their arguments and (2) the normal applications (primitives and user de-
fined) that do. We can distinguish these two cases by looking at the name of the function
[given by (car e)] to see if it is special:

(cond
((eq (car e) ‘quote) Handle quotations)
((eq (car e) 'if Handle conditionals)
(t Handle normal applications))

By combining all of the above cases, we get the following structure for the eval function:

(defun eval (e a)
(if
(atom e)
(if (numberp e)
Handle numeric atoms
Handle nonnumeric atoms)

(cond ((eq (car e) ’‘quote) Handle quotations)
((eq (car e) ’'if Handle conditionals)
(t Handle normal applications))

))

With only five distinct cases, it is really unnecessary to have three nested conditionals; the
cases are more obvious if we “flatten” the structure:

(defun eval (e a)

(cond
((and (atom e) (numberp e)) Handle numeric atoms)
((atom e) Handle nonnumeric atoms)
((eg (car e) ’'quote) Handle quotations)
((eq (car e) 'if) Handle conditionals)
(t Handle normal applications)))

We will address each of these cases in the following sections.

The Value of a Numeric Atom Is That Atom

First we will consider the evaluation of numeric atoms. The value of 2 is the atom 2; therefore,

(eval 2 a) = 2

378

IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

and the case for handling numeric atoms is

((and (atom e) (numberp e)) e)

Nonnumeric Atoms Must Be Looked Up in the Environment

Next we will consider nonnumeric atoms, such as val or text. These are assumed to be
bound to values, and the result of evaluating them is the value to which they are bound. The
value to which an atom is bound is determined by the environment in which the atom is eval-
uated. This is the purpose of the second parameter to eval; (eval E A) calls for the eval-
uation of expression E in environment represented by the list A. For example, if the envi-
ronment A binds val to 2 and text to (to be or not to be), then

(eval ‘val A)
2
(eval ’'text A)
(to be or not to be)

There are many ways in which environments can be represented in LISP; one of the sim-
plest is an association list (Chapters 9, Section 9.3). An environment that binds val and
text as specified above could be represented by this association list:

((val 2) (text (to be or not to be)))
The evaluation of val in this environment is

(eval ’'val ' ((val 2) (text (to be or not to be))))
2

We can see now how a nonnumeric atom must be evaluated: We have to look up its value
in the association list representing the current environment. Looking something up in an as-
sociation list is accomplished with the assoc function that we described earlier (Chapter 9,
Section 9.3). Thus, if e is a nonnumeric atom

(eval e a) = (assoc e a)
The first two cases of the eval function are now defined as follows:

(defun eval (e a)

(cond
((and (atom e) (numberp e)) e)
((atom e) (assoc e a))

))

A common programming error is to attempt to use an undefined variable. The code above
does not check for this error condition; it assumes that the name e is bound in the environ-
ment a. Of course, a good interpreter would check for this error condition; we will omit this
and most other checking to keep the presentation simple. Try to identify all the places in the
interpreter where error checking should be done.

11.1 RECURSIVE INTERPRETERS 379

¥ FExercise 11-1: Revise the handling of nonnumeric atoms to issue a diagnostic on an
attempt to evaluate an unbound name. Assume a function (error m) is available that
prints the value of m and terminates evaluation.

Quote Suppresses Evaluation

Next we will consider the evaluation of the various applications, beginning with the special
applications quote and if. The whole purpose of quote is to suppress or prevent the
evaluation of its argument. In other words,

(eval ' (quote X) A) = X
no matter what X might be. Therefore, the case for handling quote is trivial:
((eq (car e) ’'quote) (cadr e))

Note that (cadr e) is the first (in this case, only) argument of the application e.

The Conditional Delays Evaluation of Its Arguments

The conditional expression is different from other built-in functions in that it delays evalu-
ation of its arguments. That is, an argument (consequent or alternate) is not evaluated until
its value is needed—in effect it is passed by name. This lenient evaluation strategy is nec-
essary, since the conditional may return a value even though some of its arguments are un-
defined (recall our discussion in Section 10.1 of the conditional interpretation of the logical
connectives). Now consider a conditional:

(if PTF)

Its evaluation proceeds as follows: First evaluate P. If it is t, then evaluate T if it is nil,
then evaluate . How can this process be programmed in LISP?

If e is a conditional (if P T F), then (cadr e) is P, the condition of the condi-
tional, (caddr e) is T, the consequent (then-part), and (cadddr e) is F, the alternate
(else-part). Thus, to check the condition we must evaluate (cadr e) in the context a of
the if; if the result is t, we evaluate (caddr e) in this same context, otherwise we eval-
uate (cadddr e) in it. These evaluations are accomplished by a recursive call of eval,
which ensures that any legal LISP expression can be used as the condition, consequent, or
alternate of an i f. This is one of the sources of LISP’s generality.

It is now easy to write the checking process in LISP:

(if (eval (cadr e) a)
(eval (caddr e) a)
(eval (cadddr e) a))

Note that, as promised at the beginning of Section 11.1, we are using if to interpret if.

380

IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

B Exercise 11-2: Use pass by name parameters in Algol-60 to program a function if de-
fined so the if (P, T, F) returns the value of T if P is true and the value of F if it is
false. The if function should evaluate a parameter only if it is necessary to do so. Thus,
the following invocation should execute correctly:

x := if (y = 0, 1, x/y)

B Exercise 11-3: Extend eval to implement cond. (Hint: You will want to implement
an auxiliary function to handle the list of condition-consequent pairs.)

Arguments Are Recursively Evaluated

The only cases remaining are the applications of primitive and user-defined functions. In
both of these cases, the arguments of the application must be evaluated. This will be ac-
complished by a function called evargs, which we must define. Notice that if e is the ap-
plication

(fX1 X2 ... x,,)

then (car e) isf, the function to be applied, and (cdr e) is the list of arguments. There-
fore,

(evargs (cdr e) a)

will be the list of argument values.

How is evargs to be defined? We need to construct a list, the ith element of which is
the result of evaluating (eval x; a). This is clearly an application for mapcar since we
want to perform an operation—evaluation in the environment a—on each element of the list.
That is, we want to apply to each element of the list the function

(bu (rev ‘eval) a)
since

((bu (rev ‘eval) a) x;)
= ((rev ’‘eval) a x)
= (eval x; a)

The definition of evargs follows immediately:
(defun evargs (x a) (mapcar (bu (rev ‘eval) a) X))

The function to be applied and the evaluated list of arguments can then be passed to a
function apply that performs the application. The apply function has three arguments:

(apply fxa)

The first, £, is the function to be applied, which is computed by (car e) in this case; the
second, x, is the list of evaluated actual parameters, which is computed by (evargs (cdr

<

11.1 RECURSIVE INTERPRETERS 381
e) a) in this case; the third, a, is the environment of the caller, which is a in this case.
Therefore, the case in eval to handle all normal applications is
(t (apply (car e) (evargs (cdr e) a) a))

B Exercise 11-4: Program evargs recursively, that is, without using mapcar, bu, or
rev.

Primitive Operations Are Performed Directly

There are two types of normal applications: primitive functions and user-defined functions.
We will now consider the primitive functions.

Since there are a number of primitive operations, the natural structure for the apply
function is a cond that handles the different primitive operations. That is,

(defun apply (f x a)

(cond
((eq £ ’'plus) Handle a plus)
((eq £ ’‘car) Handle a car)

((eq £ 'cdr) Handle a cdr)
((eg £ ‘cons) Handle a cons)
and so forth))

We will consider a typical function, plus. Suppose we are evaluating the application
(plus 1 (times 2 3))

the arguments passed to apply will be

f = plus
x = (1 6)
a = the environment of the caller

Notice that x is a list containing the values of the actual parameters. What should the result
of apply be? In this case, we must add the first argument to the second argument. The first
argument is (car x) and the second argument is (cadr x), so,if £ is plus, we should
return

(plus (car x) (cadr X))
in summary, the case for handling plus is

((eq £ ’'plus) (plus (car x) (cadr x)))

Notice that, as promised at the beginning of this section (p. 375), we are using plus to im-
plement plus. This is correct since we are using LISP as both the implementation lan-
guage and the interpreted language. Similarly, the list-processing operations (car, cdr,
etc.) will be implemented in terms of themselves. If we were using a language such as Pas-

382 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

cal as an implementation language, it would be necessary to define these operations in terms
of more basic pointer manipulation operations, such as those described in Chapter 9, Sec-
tion 9.3.

The other primitive functions are similar; we show here an apply function that han-
dles the primitive list manipulation functions. Other primitive operations (arithmetic, predi-
cates, etc.) are implemented in the same way.

(defun apply (f x a)

(cond
((eq £ ’'plus) (plus (car x) (cadr x)))
((eq £ ‘car) (car (car x)))
" ((eq £ ’cdr) (cdr (car x)))
((eg £ "atom) (atom (car x)))
((egq £ 'null) (null (car x)))
((eg £ ’cons) (cons (car x) (cadr x)))
((eq £ ’eq) (eq (car x) (cadr x)))
other primitives
(t Handle user-defined functions)))
8 Exercise 11-5: Add the other arithmetic functions (difference, times, quo-
tient) and the predicates (minusp, lessp) to the definition of apply.
® Exercise 11-6*: Add error checking to apply. For example, the arithmetic operations J

should be applicable only to numbers and the list operators only to lists of the appropri-
ate type (e.g., car only applies to nonnull lists).

User-Defined Function Applications Require Four Steps

All that is required to complete our LISP interpreter is to handle the application of user-de-
fined functions. The steps required to do this are very similar to the steps required to invoke
a procedure in other languages.

It is easy to see the necessity for these steps. The goal of a function application is the
evaluation of the body of the function. However, as we have seen before, an expression has
meaning only in some context or environment. This environment must bind all of the names
used in the expression.

Where does this environment come from? It is composed of locals and non-locals, the
locals being the formal parameters of the function. Since LISP uses dynamic scoping, the
nonlocals come from the environment of the caller. Therefore, to construct the environment
of evaluation for the function’s body, it is necessary to add the formal-actual bindings to the
environment of the caller.

We get the formal-actual bindings by binding each formal to the value of the corre-

11.1 RECURSIVE INTERPRETERS 383

sponding actual. In summary, the following four steps are required to apply a user-defined
function:

1. Evaluate the actual parameters.

2. Bind the formal parameters to the actual parameters.

3. Add these new bindings to the environment of evaluation.
4. Evaluate the body of the function in this environment.

We have already accomplished the first step; evargs is used to evaluate the actuals
before they are passed to apply. Therefore, we will address the remaining three steps.

Constructing the Environment of Evaluation
Suppose that we are evaluating the application
(consval text)

in an environment that binds text to (to be or not to be),binds val to whether,
and binds the function name consval to

(lambda (x) (cons val x))

Notice that consval is bound to a lambda expression since this is how a function value is
represented.
Since the actual parameters have been evaluated, the arguments to apply are

f = consval
x = ((to be or not to be))
a = (... (val whether) ... (consval (lambda (x) Lod)) e)

Notice that the actual parameter list x is a one-element list containing (to be or not
to be), the value of the only actual parameter. Before we can do any of the remaining
three steps, it is necessary to determine to which function consval is bound. In other words,
it is necessary to interpret consval in context. This is accomplished by evaluating the func-
tion’s name since this will cause it to be looked up in the current environment. In this case,
(eval £ a) returns

(lambda (x) (cons val x))

which is the value of consval. Let’s call this L, which stands for “lambda expression.”
We can now proceed with constructing the environment of evaluation. The first step is
to bind the formals to the actuals. In general, L will be a lambda expression:

L = (lambda (vyvz..Vv,) B)

where the v; are the formal parameters and B is the body. The actual parameters, x;, are a
corresponding list:

x = (x1 X2 ... Xp)

384 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP]

Since environments are represented by association lists, binding the formals to the actuals is
accomplished by pairing up the formals and actuals in an association list: |

LE = ((vi x1) (v2 x2) ... (Vn Xn))

(LE stands for “local environment.”) It should now be clear that LE can be constructed by X
mapping the 1ist function across the list of formals and x. Since the list of formals is just '
(cadr L), we have ‘

LE = (mapcar ‘list (cadr L) x) (

The next step is to add these new bindings to the environment of the caller, thereby
forming the environment of evaluation. Since the assoc function, which is used for vari-
able accessing, searches from the beginning of the association list, if the local environment
is appended to the beginning of the nonlocal, the new bindings will supersede any previous
bindings of the same names. The environment of evaluation, EE, is constructed by

-r

EE = (append LE a)

since a is the current environment, that is, the environment of the caller.
The last step is to evaluate the body of the lambda expression in EE. Since (caddr L)
is the body of the lambda expression, this is accomplished by

(eval (caddr L) EE)

These pieces can all be assembled into the following LISP code for applying a user-defined
function:

(let ((L (eval £ a)))
(let ((LE (mapcar ‘list (cadr L) x)))
(eval (caddr L) (append LE a))))

The complete LISP universal function, or interpreter, is shown in Figure 11.1; it is about 20
lines long.? The fact that a LISP interpreter can be written in LISP in so few lines is a tes-
tament to LISP’s simplicity and power.

B Exercise 11-7: The LISP universal function is inefficient in one place: The append
function copies the entire list LE, even though it has just been created by (mapcar
*1ist ...). Show that this can be avoided by writing a new function pairlis that per-
forms the pairing and appending operations at the same time. That is,

EE = (pairlis (cadr L) x a)
Modify eval to use this new function.
B Exercise 11-8**: The LISP universal function we have described is not a complete

LISP interpreter. In particular, it does not look at the property lists of atoms when eval-
uating them (i.e., it assumes atoms are bound to values only via association lists). As a

2 We have omitted most of the primitive operations, since they are a routine addition to apply.

11.1 RECURSIVE INTERPRETERS 385

(defun eval (e a)
(cond
((and (atom e) (numberp e)) e)
((atom e) (assoc e a))
((egq (car e) ’'quote) (cadr e))
((eg (car e) 'if (if (eval (cadr e) a)
(eval (caddr e) a)
(eval (cadddr e) a)))
(t (apply (car e) (evargs (cdr e) a) a))))

(defun evargs (x a) (mapcar (bu (rev ‘eval) a) x))

(defun apply (f x a)

(cond
((eq £ ‘car) (car (car x)))
((eg £ ’cdr) (cdr (car x)))
((eg £ ’'atom) (atom (car x)))
((eg £ 'null) (null (car x)))
((eq £ ’cons) (cons (car x) (cadr x)))
((eg £ ’'eq) (eq (car x) (cadr x)))

(t (let ((L (eval £ a)))
(let ((LE (mapcar ‘list (cadr L) x)))
'(eval (caddr L) (append LE a)))))))

Figure 11.1 LISP Universal Function in LISP

consequence, it does not implement property-modifying pseudo-functions such as de-
fun and set. Add these facilities to eval.

Closures Implement Static Scoping

In Chapter 10, Section 10.2, we discussed the function construct, which is used to bind
a lambda expression to its environment of definition. That is, when we write

(function (lambda (x) (times val x)))

we mean that the lambda expression should always be called in the environment in which
function is applied. This preserves the context of the lambda expression’s body by sim-
ulating static scoping.

How is the function construct implemented? Its purpose is to inform the interpreter
that the environment of definition of the lambda expression must be remembered so that it
can be used when the lambda expression is applied. This is exactly the purpose of a closure,
which we have discussed many times in the past. A closure has two parts:

1. An ip, or instruction part, that points to a piece of program
2. An ep, or environment part, that points to the environment in which that piece of pro-
gram must be evaluated

386 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

In this case, the instruction part is the lambda expression and the environment part is the en-
vironment of definition.

Thus, the result of function is a closure containing the lambda expression and its
environment. How should a closure be represented? The simplest approach is to use a
list, the first element of which is the atom closure,? to identify the list as a closure.
For example,

(closure ipep)

This is the data structure that must be constructed by function.
The actual implementation of function is quite simple. Since it is a special function
- (because it does not evaluate its argument), it is handled in the main body of eval in the
same way as quote and cond. The modified eval is

(defun eval (e a)
(cond
((and (atom e) (numberp e)) e)
((atom e) (assoc e a))
((egq (car e) ’'quote) (cadr e))
((eq (car e) 'if)
(if (eval (cadr e) a)
(eval (caddr e) a)

(eval (cadddr e) a)))
((eq (car e) 'function) (list ‘closure (cadr e) a))
(t (apply (car e) (evargs (cdr e) a) a))))

since (cadr e) is the argument of e (i.e., the lambda expression).

The above modification handles just the construction of a closure; it does not use the
closure. The other place where we must deal with closures is apply since it handles func-
tion calls and, hence, must know whether to call in the environment of definition or in the
environment of the caller. The result of evaluating the function (eval £ a) may be ei-
ther a lambda expression or a closure. The case of a lambda expression is the same as in
Figure 11.2. Let’s consider what must be done if it is a closure:

L = (closure (lambda (x;..x,) B) ED)

The local environment is constructed just as before, except now it must be appended to the
environment of definition, ED, rather than the caller’s environment, a. Hence,

LE = (mapcar ‘list (cadadr L) x)
EE (append LE (caddr L))

since (caddr L) is ED—the environment of definition—and (cadadr L) is the list of
formal parameters.

3 In most LISP systems the atom funarg, meaning “functional argument,” is used instead of closure.

11.1 RECURSIVE INTERPRETERS 387

(defun eval (e a)

(cond
((and (atom e) (numberp e)) e)
((atom e) (assoc e a))
((eq (car e) ’'quote) (cadr e))
((eg (car e) 'if) (if (eval (cadr e) a)
(eval (caddr e) a)
(eval (cadddr e a)))
((eg (car e) 'lambda) (list ’‘closure e a))
" (t (apply (car e) (evargs (cdr e) a) a))))
(defun evargs (x a) (mapcar (bu (rev ‘eval) a) X))

(defun apply (f x a)

(cond
((eq £ ’car) (car (car x)))
((eg £ ‘cdr) (cdr (car x)))
((eg £ ’atom) (atom (car x)))
((eg £ 'null) (null (car x)))
((eg £ ‘cons) (cons (car x) (cadr x)))
((eq £ ’'eq) (eq (car x) (cadr x)))
(t (let ((L (eval £ a)))
(let ((LE (mapcar ’‘list (cadadr L) x)))

(eval (caddadr L) (append LE (caddr L))))))))
Figure 11.2 Statically Scoped LISP Interpreter in LISP

Since both dynamically scoped lambda expressions and statically scoped closures
must be accommodated, the handling of user-defined functions is a little more compli-
cated.

(defun apply (f x a)

(cond
((eq £ ’'car) (car (car x)))
... oetc. ...
(t (let ((L (eval £ a)))
(if
(egq (car f) ‘closure)
(let ((LE (mapcar ’'list (cadadr L) x)))

(eval (caddadr L) (append LE (caddr L))))

(let ((LE (mapcar ‘list (cadr L) x)))
(eval (caddr L) (append LE a))))))))

R S

388 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

[Note that (caddadr L) = (caddr (cadr L)) = the body of the lambda expres-
sion, which is the ip of the closure L.]

B Exercise 11-19: Show that caddr accesses the environment of definition from a closure.
B Exercise 11-10: Show that cadadr accesses the formal parameter list from a closure.

B Exercise 11-11: Show that caddadr accesses the function body from a closure.

Lexical Scoping Uses Closures Uniformly

¥

We are now trying to make our interpreter accommodate two incompatible scope rules. As
we discussed in Chapter 10, Section 10.2, recent LISP dialects (such as Scheme) have adopted
a uniform static scope rule. This simplifies the interpreter. The most obvious simplification
is that the apply function has to handle only one kind of function, that represented by clo-
sures. Furthermore, since all lambda expressions are bound to their environments of defini-
tion, there is no longer any need for function. That is,

(lambda (x) (cons val x))

is considered equivalent to
(function (lambda (x) (cons val x)))

A closure is constructed for all lambda expressions. The interpreter that results from these
alterations is shown in Figure 11.2; it is as simple as the dynamic scoping interpreter.

Common LISP, in an attempt to gain the advantages of static scoping while remaining
reasonably compatible with older LISP dialects, has adopted a combination of static and dy-
namic scoping. For example, formal parameters and variables (established by sets, lets,
and the like) are normally statically scoped. On the other hand, variables can be given dy-
namic scope by declaring them “special.”* Function definitions established by defun are
global; therefore, static and dynamic scoping amount to the same thing for them.

B Exercise 11-12*: Extend the LISP universal function that we have developed to im-
plement let (Section 10.2).

11.2 STORAGE RECLAMATION

Explicit Erasure Complicates Programming

In our discussion of the representation of lists (Chapter 9, Section 9.3), we saw that the cons
operation calls for the allocation of a new cons-cell. These cons-cells are allocated from a
free storage area similar to that used by the new operation in Pascal. Since conses are so

4 Certain other constructs, such as “catchers” (analogous to Ada exception handlers) also have dynamic scope.
The justification for dynamic scoping of exception handlers was discussed in Section 8.1.

r

11.2 STORAGE RECLAMATION 389

frequent in LISP, it is clear that this free storage area will be exhausted by most programs.
Unless there is some way of returning cells to the free area, the program will have to be
aborted.

One solution to this problem—the one adopted by Pascal and many other languages—
is explicit erasure. This means that when the program no longer needs a certain cell, the pro-
grammer must explicitly return it to the free storage area. In Pascal this is accomplished by
the dispose procedure. The invocation dispose (p) returns to free storage the cell
pointed to by p. This is normally accomplished by linking the cell onto a free-list, where the
storage allocator can find it to satisfy a later storage allocation (new) request.

Explicit erasure has several problems. First, it requires programmers to work harder;
they must keep careful track of each cell and of all of the lists in which it participates (re-
member, sublists can be shared) and determine when the cell can be released. Some people
have claimed that “good” programmers will understand their programs well enough to be
able to do this. You may recognize this as the same argument that was used against early
assemblers and compilers (such as FORTRAN): “Good” programmers do not need symbolic
names since they know the absolute addresses of all the variables. It is the more dystopian
view of programming languages, since it focuses on the negative aspects of greater distance
from the machine (Section 1.4). Now we know that it is much better to have a computer take
care of bookkeeping details such as these since it allows programmers to concentrate on more
important issues of program structure and organization. Automatic erasure is advantageous
if it can be accomplished transparently.

Another problem with explicit erasure is that it violates the security of the programming
system. Suppose that a cell is returned to free storage but is still referenced by several other
lists. These other lists will now have dangling pointers, that is, pointers that do not point to
an allocated cell. This situation is illustrated in Figure 11.3. When the storage allocator reuses
this cell, these dangling references will likely cause mysterious errors. In fact, since unallo-
cated cells may still be accessible from the program (via dangling references), it is even pos-
sible to corrupt the storage allocator’s data structures (e.g., the free-list).

Garbage collection represents an application of the Responsible Design Principle, since
it provides a better solution to the problem (dynamic storage allocation and deallocation)
than is often requested by programmers (operations for explicit allocation and deallocation).
Although some languages, such as C and its offspring, have gone back to explicit operations,

Dangling
references —"?IE-‘
L§|-“

l'

I
__J____
e C e - -
Freelnst—»l | ———>l | —t

- ! 1 __

After cell C returned to free—llst, other pointers
to it become dangling references.

Figure 11.3 Example of Dangling References

390 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

there has been a rediscovery of garbage collection in languages concerned with program-
ming security (e.g., Java).

References Counts Identify Inaccessible Lists

We have seen that explicit erasure is low level and error-prone. What is the alternative? The
goal is to return a cell to free storage when it is no longer needed, that is, when it is no longer
accessible from the program. Therefore, an automatic erasure system must somehow keep
track of the accessibility of each cell. In LISP a cell is accessible only if it is referenced (i.e.,
pointed at) by some other accessible cell. The only cells that are directly accessible are those
used by the interpreter, such as those containing the program being interpreted and the as-
sociation lists representing environments still in use.

Note that when we are considering whether a cell can be reclaimed, it is not important
which cells point to this particular cell; all that is relevant is the number of accessible cells
referencing the cell of concern. This observation leads to a technique of storage reclamation
called reference counts since it keeps track of the number of accessible references to each
cell. One of many> ways to do this is to include a reference count field in each cell (see Fig-
ure 11.4).

Reference counts must be maintained correctly. Whenever an additional reference to a
cell is made, that cell’s reference count must be incremented. Similarly, whenever a refer-
ence to a cell is destroyed, that cell’s reference count must be decremented. There are two
ways a reference can be destroyed. A pointer can be overwritten (such as happens in a
rplaca, rplacd, Section 9.3, or assignment operation) or the cell containing the pointer
can itself become inaccessible.

When a cell’s reference count becomes zero, it means that the cell is inaccessible and
can be returned to the free-list. Notice, however, that each cell contains pointers to two other
cells, that is, the pointers in its 1eft and right fields. Therefore, whenever a cell is re-
leased, the reference counts of the two cells to which it points must also be decremented

¥ L h!
HNE N AN s I o KN s KN
to“/ be‘/ orA/ not/ toA/ be/

Figure 11.4 Example of Reference Counts

5 There are a great many techniques for automatic storage reclamation; in this section we can touch on only
the simplest. The interested reader should consult the data structures literature for more information. See es-
pecially Cohen (1981).

11.2 STORAGE RECLAMATION 391

since there is now one less accessible reference to each. This decrementing may cause the
reference counts of either of these cells to go to zero, which means that they also must be
freed. Hence, the process of decrementing a reference count may be recursive. Here is the
procedure for decrementing the reference count of cell C:

decrement (C):
reference count (C) := reference count (C) - 1;
if reference count (C) = 0 then
decrement (C1T .left);
decrement (C7T .right);
return C to free-list;
end if.

Notice that this approach reclaims a cell as soon as it becomes available. Therefore, if the
free-list is ever exhausted, it means that there is no more storage available, and the program
must be aborted. Further, studies have shown that almost all (95%) reference counts are 1,
so at least one cell is usually freed whenever a pointer is destroyed.

Cyclic Structures Are Not Reclaimed

Consider the list structure shown in Figure 11.5. It is a cyclic structure that could have been
constructed by using rplacd to make the right field of C point to A. Suppose that the only
references to these fields are those shown in the figure; then the reference counts will be as
shown. Notice that this structure is accessible from only one place—the pointer entering from
the left. Now suppose that this pointer is destroyed, making the structure inaccessible; this
will cause A’s reference count to be decremented to 1. Since neither A, B, nor C has a zero
reference count, no cells will be returned to free storage even though none of these cells is
accessible! This situation will occur wherever there is a cycle in the list structure, that is,
wherever there is a path from a cell back to itself. In a reference-counted system, these cells
will be lost forever.

Several solutions to this problem have been proposed. One is to disallow cyclic struc-
tures altogether. Since they are produced only by using the rplacaand rplacd pseudo-
functions, eliminating these will eliminate cycles.® Some computer scientists have ar-
gued for this solution on the basis that these pseudo-functions have side effects and do

A B C

—<K— 2 !

B
-
<

Figure 11.5 Cyclic List Structure

6 Under some circumstances putprop, set, defun, and similar pseudo-functions can produce cycles
through property lists.

o GG,

392 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

not belong in an applicative programming language. They claim that cycles are error-
prone and difficult to understand. Other computer scientists have argued that cyclic struc-
tures are necessary for some problems. Whether cyclic structures should or should not
be a part of LISP or whether they could be included in a tamed form is an open research
problem.

@ Exercise 11-13*: Discuss the pros and cons of cyclic list structures. Give at least one
example of the usefulness of cyclic structures. Explain how you could do without them
in that situation.

- B Exercise 11-14**: Develop a reference counting scheme that is not fooled by cycles.

Garbage Collection Reclaims Cyclic Structures

There is an alternative approach to automatic storage reclamation that can handle cyclic struc-
tures; it is called garbage collection. With reference counts, cells are released as soon as they
become inaccessible. Thus, cells that are inaccessible but not available for reuse (“garbage”)
never accumulate. Garbage collection adopts a different philosophy. Inaccessible cells are
simply abandoned; no attempt is made to return them to free storage. When the supply of
free cells is exhausted, the system enters a garbage collection phase in which it identifies
all of the unused cells and returns them to free storage. One way to view garbage collection
is that it ignores the storage reclamation problem until a crisis develops, and then it deals
with the crisis.

There are many techniques for garbage collection and many analyses of garbage col-
lection under varying circumstances. In this section we will deal briefly with the simplest
kind of mark-sweep garbage collector, which operates in two phases. In the mark phase, the
garbage collector identifies all of those cells that are accessible, that is, that are not “garbage.”
In the sweep phase, the garbage collector places all of the inaccessible cells in the free stor-
age area, often by placing them on the free-list.

First, we will investigate the mark phase. We noted earlier that all accessible cells
must ultimately be reachable from some number of roots known to the interpreter, such
as the program structure and the association lists representing the active environments. In

the mark phase, the garbage collector starts at the roots and follows the pointers, marking
each cell it reaches as accessible. For this purpose each cell requires an associated mark
bit that indicates whether or not it is accessible. These mark bits may be part of the cell
or may be stored in a separate area of memory; we will draw them as though they are part
of the cells. At the beginning of the garbage collection process, all cells are unmarked.
Whenever the marking process encounters a cell that is already marked, it knows that it
need not continue down that path (since it has already marked it). In particular, this guar-
antees that cycles in the lists will not put the garbage collector into an infinite loop. Mark-
ing is depicted in Figure 11.6; the dotted arrows indicate the path traced by the garbage
collector.

The algorithm for the mark phase is thus

mark phase:
for each root R, mark (R).

11.2 STORAGE RECLAMATION 393

Figure 11.6 Example of Mark Phase of Garbage Collection

mark (R):
if R is not marked then:
set mark bit of R;
mark (R7.left);
mark (R7 .right);
endif.

Notice that this is a recursive algorithm, and, like all recursive algorithms, it will require
space for the activation records of the recursive procedure. You might wonder how the
garbage collector could ever run since it is only called in a storage allocation crisis when no
free storage is available. There are many solutions to this problem. One is to invoke the
garbage collector before the last cell is allocated and when there is still enough space for the
garbage collector’s stack. Another solution is to encode the stack in some clever way, such
as by reversing the links in the marked nodes. (If you are interested in these issues, consult
the literature about garbage collectors.)

The second phase of garbage collection is the sweep, when all of the inaccessible cells
are returned to free storage. By the end of the mark phase, all accessible cells have been
marked. Therefore, in the sweep phase we can visit each cell in order (that is, sweeping
through memory). If a cell is unmarked, then it is inaccessible, and it can be linked onto the
free-list. If it is marked, then it is accessible; we reset its mark bit (in preparation for the
next garbage collection) and go on to the next cell. This procedure can be summarized:

sweep phase:
for each cell C:

if C is marked then reset C’s mark bit,
else link C onto the free-list.

394 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

B Exercise 11-15*: Design a garbage collection algorithm that avoids the necessity for a
stack by reversing the links in the list structures.

Garbage Collection Results in Nonuniform Response Time

A serious problem results from garbage collection’s crisis approach to storage reclama- v
tion. In a large address space, a garbage collection can be quite expensive since it neces- f
sitates tracing down all of the lists and visiting every cell in memory. The result is that a '

- program runs along quite nicely until it runs out of storage; then it grinds to a halt for a
garbage collection. After the garbage collection (and assuming an adequate amount of stor-
age was reclaimed), it resumes high-speed execution until the next garbage collection. This
is quite apparent in an interactive system since, periodically, the system will stop (often
for minutes) while a garbage collection is in progress. You can probably imagine how an-
noying this can be to the users. Under these conditions, garbage collection is anything but
transparent; we find ourselves looking at the garbage collector rather than through it. It is
a particularly serious problem in real time situations where the program must be guaran-
teed to respond in a certain amount of time. If a garbage collection happens at the wrong
time, it can lead to disaster. (Consider a program responsible for the control surfaces of
the Space Shuttle!) This is not as much of a problem with reference counts since the time
required for storage reclamation is distributed across the execution of the program. There
are also other solutions to this problem, such as parallel garbage collection. With this ap-
proach, garbage collection takes place continuously and in parallel with normal program
execution. (Once again, see the garbage collection literature if you are interested in these
problems.)

11.3 EVALUATION AND EPILOG

LISP Has Been Very Successful in Artificial Intelligence

LISP has become the most commonly used language for artificial intelligence applications.
One of the reasons is the same one that motivated its original design: its ability to represent
and manipulate complex interrelationships among symbolic data. There are several other rea-
sons that have become apparent through the use of LISP.

LISP Is Suited to l1ll-Specified Problems

It is a characteristic of artificial intelligence applications that the problem is not well under-
stood. Indeed, often one goal of the research is to understand the problem better. This char-
acteristic also applies to research and advanced development projects in areas other than ar-
tificial intelligence. LISP is very suited to this kind of problem.

One of the characteristics that suits LISP to ill-defined problems is its dynamic type sys-

11.3 EVALUATION AND EPILOG 395

tem and flexible data structures. In previous chapters we have seen that one of the recent
trends in programming methodology and programming languages has been the specification
of abstract data types. That is, the programmer first decides what data structures and data
types are required and then specifies the necessary operations in terms of their inputs and
outputs. Finally, the representation of the data structures and operators is fixed (i-e., the ab-
stract data type is implemented).

On ill-defined problems this methodology does not work so well. Often it is not known
exactly what operations on a data type will be required. It is difficult to set down ironclad
input-output specifications when the ultimate requirements that the data structure must sat-
isfy are not clear. Rather, a more experimental approach is valuable. Just as in a laboratory,

” where it is necessary to be able to connect equipment together in a wide variety of ways, in
an experimental software environment, flexibility of interconnection is also important. A lan-
guage such as LISP, with few restrictions on invocation of procedures and passing of para-
meters, is well suited to experimentation.

LISP Is Easy to Extend, Preprocess, and Generate

The representation of LISP programs as LISP lists, although originally an accident, has
turned out to be one of LISP’s greatest assets. It has meant that it is very convenient to ma-
nipulate LISP programs using other LISP programs. We saw an example of this in the eval
interpreter. In practice it has influenced the focus and actions (Section 1.4) of LISP pro-
grammers, who have been encouraged to write many programming tools in LISP. These in-
clude programs to transform LISP programs into other LISP programs and to generate LISP
programs from other notations. It has simplified writing programs that process LISP pro-
grams, such as compilers, cross referencers, and optimizers. It has encouraged special-pur-
pose extensions to LISP for pattern matching, text processing, editing, type checking, and
so on. Of course, all of these tools could be (and in some cases, have been) provided for
conventional languages such as Pascal. However, they tend to be large and complicated be-
cause they must deal with a conventional language’s complex, character-oriented syntax.
Modifying a Pascal or Ada compiler can be a Herculean undertaking; as a result it is usu-
ally done only by systems programmers and only when absolutely necessary. In contrast, it
is trivial for one LISP program to access the parts of another because LISP has a simple,
structured syntax. As a result, programmers are encouraged to experiment with sophisti-
cated programming tools.

LISP Programming Environments Developed

The ease with which LISP programs can manipulate other LISP programs has led to the de-
velopment of a wide variety of LISP programming tools. From these libraries of tools there
developed the idea of a programming environment. This is a system that supports all phases
of programming, including design, program entry, debugging, documentation, and mainte-
nance. It is significant that the first, and richest, programming environments developed around
LISP systems.

396 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

The Interlisp Programming Environment Grew
from an Early LISP System

As an example of an integrated programming environment for LISP we will consider the In-
terlisp system.” The origin of Interlisp was a 1966 implementation of LISP by BBN (Bolt

Beraneck and Newman); in 1972 it became a joint project with Xerox PARC (Palo Alto Re- ‘
search Center), and was renamed Interlisp. The system grew and evolved during the 1970s

in response to the needs and ideas of its implementors and users. The characteristics of the |
LISP language combined with an experimental approach to tool development to produce a
highly integrated, but loosely coupled and flexible programming environment. In many cases
it is a good example of a tool that transparently extends the programmer’s reach (recall Sec-
tion 1.4). Here we can, at best, only touch on its facilities.

“Do What | Mean” Attempts Intelligent Error-Correction

Certainly one of the more notable features of Interlisp is DWIM, the “Do What I Mean” fa-
cility. DWIM is invoked by a component of the Interlisp system (e.g., the LISP interpreter,
the keyboard command interpreter, or the editor) whenever it detects an error. DWIM at-
tempts to diagnose the cause of the error in the context in which it occurred and to make an
appropriate correction. In all cases, DWIM attempts to do what intelligent human assistants
would do if you made a simple mistake communicating with them.

For example, if the user types an illegal editor command, DWIM will attempt to deter-
mine if the cause was a typing error. To this end it has a function for measuring the “close-
ness” of words as they are typed. For example, words will be close if one could result from
the other (1) by replacing a letter by another that is close to it on the keyboard, (2) by ex-
changing two letters, or (3) by omitting or repeating a letter (as occurs with “key bounce”).
If DWIM finds a unique correction (a legal editor command, in this case) that is “sufficiently
close,” it will correct it automatically; otherwise it will seek confirmation from the user be-
fore making the replacement. (All of this is under the control of the user; in practice DWIM
makes good corrections, and users come to trust it.)

It is important to understand that DWIM is more than a simple spelling corrector ap-
plied to keyboard input; it may be called by any program when it detects an error of any
kind. The invoking program is responsible for providing the context to be used for correc-
tion. For example, DWIM is invoked by the mail utility, so if the user mistypes a mail ad-
dress, DWIM will make a context-sensitive correction by consulting its history of e-mail ad-
dresses used by that person.

As another example, the LISP interpreter invokes DWIM whenever it detects an error.
If it is interpreting a program that invokes an undefined function, DWIM will attempt to de-
termine if the cause is a misspelling of a built-in or user-defined function. Thus cnos would
be replaced by cons and mak-table by make-table. Again, DWIM is aware of the

7 A brief discussion of the Interlisp system can be found in “The Interlisp Programming Environment” (Com-
puter, April 1981, pp. 25-33) by Warren Teitelman and Larry Masinter. See also Eric Sandewall’s “Pro-
gramming in an Interactive Environment: The LISP Experience” (ACM Comp. Surveys 10, 1, March 1978,
pp. 33-71).

11.3 EVALUATION AND EPILOG 397

sorts of parenthesis errors commonly made by programmers (e.g., in writing a cond) and
will rearrange them appropriately. Notice that these corrections are not purely syntactic; an
undefined function is essentially a semantic error. DWIM can be invoked in response to any
kind of error. So, for example, if a function is passed an illegal argument, it can invoke
DWIM to try to correct it (by doing an implicit type conversion, for example). When DWIM
finds a correction to a program, it will change the program in memory (subject to user con-
firmation, if necessary), since the program is just a LISP data structure, and inform the file
system to automatically update the source-code file.

The Programmer’s Assistant Saves Work

Another useful component of the Interlisp system, the Programmer’s Assistant, continues the
theme that the programming environment should be an intelligent assistant to the user. The
Programmer’s Assistant maintains a “history list” of all commands typed by the user, and
permits the user to reuse previous commands in various ways. For example, using the sys-
tem’s natural language-oriented syntax, the user could type

use print for read

to reexecute the most recent command, but with the atom read replaced by print. (This
is a LISP sublist replacement, not a string replacement.) For more complex modifications,
the £ix command invokes the editor on a previous command.

It is not so unusual now to find command interfaces that provide a history list with some
ability to edit the commands (although they are not usually so general, easy to use, or intelli-
gent as the Programmer’s Assistant), but other features are still rare. One of these is undo,
which reverses the effect of any command (not just the most recent) on the history list without
undoing subsequent commands. This is remarkable, since a single LISP invocation can have
wide-ranging effects, including destructive changes to list structures (such as occur from edit-
ing). (Imagine a mapcar that performs destructive operations on every element of a long list.)

The undo feature is implemented by having the most basic destructive operations keep
track of the changes they make and how to reverse them. In the simplest case there are just
two destructive operations in LISP: rplaca and rplacd; all other destructive operations
invoke these. Therefore, rplaca must record the previous contents of the 1eft field, and
rplacd the previous contents of the right field. This information is kept in an global
change-list. Whenever a command is executed, the Programmer’s Assistant keeps track of
the change-list elements contributed by that command. To undo the effect of the command,
we reverse the changes recorded in each of those elements. Such a change-list may occupy
a lot of (virtual) memory space, but it permits a very reliable implementation of a general
undo facility. Arbitrary programs can make use of the undo facility, provided all their de-
structive operations are implemented in terms of LISP’s (rplaca, rplacd), or provided
their most basic destructive operations are modified to update the change-list.

The Programmer’s Assistant is a general-purpose tool that can be invoked from any pro-
gram that provides a command interface. For example, the editor invokes the Programmer’s

Assistant, and so redo, undo, and the other Programmer’s Assistant facilities can be used
in the editor. Similarly, user programs can invoke the Programmer’s Assistant for their user
interfaces.

o D SSS"“”’”’“”’’EEEEEEEEE

398 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

Masterscope Helps Maintain Large Systems

Interlisp was designed for experimental program development, in which it is often unknown,
in advance of program implementation, what can be done or even what should be done. In
such cases it is often impossible to decide in advance what the interfaces should be. There-
fore, in an experimental programming environment, more than in a production environment,
it is useful to be able to gather information about a large, complex software system. This
capability is provided by Masterscope, which analyzes LISP programs and compiles a data-
base of cross-reference information, which is automatically updated whenever a function is
modified. This database can be queried by natural language-like commands, such as

who sets count

which will tell the user which functions set the variable count. Masterscope can also be
used to “drive” other programs, such as the editor. For example, we can type

edit where any function uses the record symtab

to invoke the editor on every function that uses the record symtab. This is much more in-
telligent than a simple search for the string ‘symtab’. Similarly, we could invoke the edi-
tor on every function that writes a certain variable, that calls a certain function, etc.

The File System Maintains Consistency among Representations

Among the other facilities in the Interlisp system are a compatible compiler and interpreter,
a debugger, and a syntax extension mechanism. The file system ensures consistency between
various representations of each data structure. For example, when a function is edited as a
list structure in memory (e.g., by the user or as a result of DWIM), a note is made to dump
to disk automatically a “pretty printed” definition of the function. Transparency is preserved.

Interlisp Is Integrated But Extensible

Teitelman and Masinter remark that Interlisp is not unique in being “friendly, cooperative
and forgiving”; its uniqueness comes from being highly but loosely integrated and in being
extensible. Integration results from any tool being able to make use of any other, when it
makes sense to do so; it is not necessary to exit one tool to use another. Masterscope can
call the editor, the editor can call the LISP interpreter, the interpreter can call the debugger,
which can call the editor, and so forth; everything makes use of DWIM and the Program-
mer’s Assistant. Although the tools are integrated, they are loosely coupled, because they
are autonomous programs that can be developed and evolve independently.

The evolution and flexibility of Interlisp are enhanced by several different dimensions
of flexibility. First, a number of the tools permit users to define new commands in terms of
existing commands. In the simplest case these are “substitution macros”; that is, the macro’s
arguments (which are LISP lists) are substituted for formal parameters in the macro’s defi-
nition (also a list), which is passed as a command sequence to the tool. More complex ex-
tensions can be implemented by “computed macros,” which use the full power of LISP to
compute the sequence of commands to be forwarded to the tool.

The Interlisp system as a whole is extensible because users are “implicated in the con-

Ed

11.3 EVALUATION AND EPILOG 399

spiracy,” since their programs are allowed to make use of the components of Interlisp. For
example, user programs can make use of the Programmer’s Assistant and DWIM, call or be
called from the editor, etc. Thus Interlisp as a whole grows through the loose integration of
additional tools. This is facilitated by the Interlisp philosophy of providing users with “en-
abling capabilities,” which are features a user needs to implement higher level capabilities.
For example, when the LISP interpreter encounters an error, it invokes a function called
FaultEval; thatis the enabling capability. Using it, higher level capabilities such as DWIM
(and others not yet invented) can be implemented. A more tightly integrated system would
not be so easy to extend.

In summary, Interslip demonstrates how the LISP language has facilitated the develop-
ment and evolution of a comprehensive, integrated, extensible, and flexible programming en-
vironment, which remains an inspiring example. In the next chapter we will look at the
Smalltalk system, which has many similar positive characteristics. It is probably no coinci-
dence that it too was developed at Xerox PARC.

LISP’s Inefficiency Has Discouraged Its Use

With all that we have said, you might ask, “Why doesn’t everyone use LISP?” But “all tech-
nology is nonneutral.” For example, early LISP implementations were quite inefficient. There
were several sources of this inefficiency.

First, most LISP systems are interpreted, and interpreters often run two orders of mag-
nitude slower than the code produced by a compiler. This is one reason that many LISP sys-
tems now provide compilers and optimizers.

Another reason is that LISP depends heavily on the use of recursion, which (as we saw
in Chapter 6) can be fairly complicated to implement. As a result, recursion was inefficient
on most machines of the 1960s. More recent machines have included hardware to assist pro-
cedure invocation and activation record manipulation for block-structured languages. This
improves the performance of implementations of LISP, particularly statically scoped dialects
of LISP. In addition, techniques have been discovered that allow many LISP function ap-
plications to be replaced by machine branches. Therefore, a loop expressed recursively may
be no less efficient than one written using a goto.8

Certainly, dynamic storage allocation is one of the more expensive aspects of LISP, but
it is also one of the most valuable. For this reason, there has been a great deal of work on
methods of speeding up both storage allocation and reclamation. One way of doing this has
been to include assistance for garbage collection in the hardware. More recently this has led
to the development of “LISP machines,” that is, computers specially designed for running
LISP. Several of these are commercially available.

LISP Continues to Evolve

As already mentioned, a standard Common LISP has been developed. Like many other lan-
guages (including Ada and C), LISP has been extended to include facilities for object-
oriented programming (discussed in the next chapter), which are included in the standard.

8 See, for example, MacLennan (1990), Section 3.9, for a discussion of these optimizations.

400 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

Despite some extensions such as this, the design of Common LISP was restrained by the de-
sire to maintain some compatibility with earlier dialects. Therefore it has retained a number
of undesirable characteristics from its ancestors (e.g., dynamic scoping). For this reason at-
tempts have been made to “do LISP right,” that is, to design a LISP-like language without
the burden of its history. One such attempt was the never-completed LISP-2. A more recent,
successful attempt is the Scheme language, which was designed in the 1975-1980 period
and evolved over the following decade; it became an ANSI standard in 1991. It is a better
vehicle than LISP for functional programming, and is used at some universities (e.g., MIT)
to teach beginning programming (see, for example, Sussman and Abelson’s Structure and i
Interpretation of Computer Programs). '

LISP Shows What Can Be Done with an Applicative Language

LISP is the closest thing to an applicative language in widespread use. Therefore, the expe-
rience gained with LISP has been very valuable in evaluating applicative programming lan-
guages and applicative programming styles. This experience finds direct application in the
development of functional programming languages. We have seen how many ideas, includ-
ing lists and functionals, have been taken from LISP by functional programming. Again, the
LISP experience is evidence in favor of the practicality of functional programming languages.
In the future, we can expect the development of new LISP dialects, new functional and ap-
plicative languages, and new LISP programming tools and environments.

Characteristics of Function-Oriented Programming Languages

Although LISP is not a purely applicative language, it illustrates many of the characteristics
of applicative (function-oriented) programming. We have seen that there is an emphasis on
the use of pure functions and minimal use of assignment operations (none in a purely ap-
plicative language). This leads to the use of recursion as a method of iteration, and Polish
(prefix) notation as the basic syntactic structure. Applicative languages usually have the list
as their principal data structure. Use of lists is supported by dynamic (but strong) typing and
automatic storage management. The basic control structures of applicative programming are
the conditional expression and recursion, although many of these languages (especially the
specifically functional languages) provide higher-level control structures, such as mapping
and reduction operators.

Function-oriented languages have many desirable properties. First, their high level of
abstraction, especially when functionals are used, suppresses many of the details of pro-
gramming (in conformance with the Abstraction Principle) and thus removes the possibility
of committing many classes of errors. Second, their lack of dependence on assignment op-
erations allows function-oriented programs to be evaluated in many different orders. This
evaluation order independence makes function-oriented languages good candidates for pro-
gramming massively parallel computers. Third, the absence of assignment operations makes
function-oriented programs much more amenable to mathematical proof and analysis
than are imperative programs. It is difficult to reason about things that change in time. Since
function-oriented programming takes place in the timeless realm of mathematics, it avoids
the difficulties of temporal reasoning. On the other hand, some applications do not seem to

EXERCISES 401

fit easily into this timeless framework. In the next chapter we investigate a very different
fifth-generation programming paradigm—one that confronts directly the problem of time by
modeling the way objects change in time.

- 1*. Implement the eval interpreter in a conventional language such as Pascal or Ada.

2*. Write in LISP a recursive interpreter value for fully parenthesized infix arithmetic ex-

=

5%,

pressions. For example,

(value (3 + ((8 - 2) * 4)))
27

Write a function (body f) that returns the body of the lambda expression that is the value
of the expr property of the atom f.

Using the body function defined in the previous exercise, write a LISP program to com-

pile a table giving the frequency of occurrence of each of the functions car, cdr, and cons
in a given function.

In Exercise 6 at the end of Chapter 10 you designed a more readable syntax for LISP. Write
an eval function for programs in this form or write a program to translate programs in this
form into the usual LISP notation.

. (Difficult) Write a list structure editor in LISP. This editor can also be used for editing LISP

functions. The editor should comprise the following procedures:

(edit L) - edit list L; focuses attention on
the top level of L

(down n) - focus attention on nth element of
CL (current list)

(up) - focus attention on list containing CL
(delete n) - delete nth element of CL
(insert nx) - insert x after nth element of CL

Each command should echo CL after making the modification. To keep the echoing brief,
only the top three levels of CL should be echoed (lower-level lists are printed as the atom
<list>). For example,

(set 'GP (body 'append))
(if (null L)

M
(cons (car L) (append (cadr L) M)))
(edit GP)
(if (null L) M (cons <list> M))
(down 4)
(cons (car L) (append (cadr L) M))
(down 3)

(append (cadr L) M)

'—<~

402 IMPLEMENTATION OF RECURSIVE LIST-PROCESSORS: LISP

(delete 2)
(append M)

(insert 1 ’(cdr L))
(append (cdr L) M)

7*. Extend the eval interpreter to handle set and defun. This will require you to implement
property lists.

8. Show how set could lead to a cyclic list structure. '

9*. Write a reference counting storage manager in a conventional language such as C, Pascal,
-t
or Ada.

10*. Write a garbage collecting storage manager in a conventional language such as Pascal or
Ada. Hint: To be able to implement garbage collection, you will have to have an array con-
taining all the list cells and use indices into this array instead of list cell pointers.

11*. Based on your experience in the previous exercise, discuss the problems of writing system
software such as storage managers in languages like Pascal and Ada. Would writing a garbage
collector be easier in FORTRAN or C?

12*, In the exercises following Chapter 9, you studied cdr encoding. Describe a garbage col-
lector for cdr encoded lists. Compare its performance with the garbage collector for the
usual representation of lists.

13*. Obtain the documentation for a commercial “LISP machine.” Evaluate it as an environment
for program development.

14*. Read and critique “The INTERLISP Programming Environment” by W. Teitelman and L.
Masinter (Computer 14, 4, April 1981).

15*. Read and critique “Design of a LISP-Based Microprocessor” by G. L. Steele, Jr., and G. J.
Sussman (Commun. ACM 23, 11, November 1980).

16*. It has been 20 years since Sandewall’s article was written, and nearly that long for Teitel-
man and Masinter’s article (see footnote 7 for citations). Read one or the other of these ar-
ticles and discuss them relative to current programming practice and contemporary pro-
gramming environments. Which ideas are still valuable? Which are now obsolete?

